Using Environmental DNA and Citizen Science to Monitor Stream Salamanders in Great Smoky Mountains National Park

Gar Secrist, Todd Pierson, Tiffany Beachy, Jennifer Jones, Benjamin Fitzpatrick

Great Smoky Mountains Institute at Tremont and University of Tennessee
Citizen Science

- Educate public on local scientific research and conservation issues through personal involvement
- Valuable to researchers for conducting large-scale or long-term field sampling

Great Smoky Mountains Institute at Tremont

- Connecting people and nature: residential school programs, summer camps, volunteers
Stream Salamander Monitoring

- Semi-aquatic salamanders are highly abundant and diverse in stream ecosystems in the Smokies.
- Long-term monitoring can help assess threats to these streams including:
 - Acidification
 - Invasive species: feral hogs, hemlock wooly adelgid
 - Amphibian diseases: ranavirus, chytrid fungus
 - Global climate change
Monitoring Methods

• **Direct monitoring:** Capture, identification, and measurement of salamanders
 – Can compare capture rates over time
 – Labor intensive
 – Challenges in detection and identification of certain species

• **Indirect monitoring:** “Salamander CSI” – collection and analysis of genetic material
 – Relatively simple sample collection
 – May detect rarely captured species
 – More precise identification of difficult species
 – Uncertain potential for evaluating relative abundance of species
Comparison of Methods

Direct Monitoring:
Leaf Litter Bags
• Artificial salamander habitats
• 21 bags spaced along stream transect
• Allows for direct capture and identification
• Standardized comparison of capture rates over time

Indirect Monitoring:
Environmental DNA (eDNA)
• Water samples collected along same transect as leaf bags
• Water filtered in the laboratory
• DNA extracted from filtered samples for genetic analysis
eDNA Genetic Analysis

- DNA extracted from filtered sample (Qiagen DNEasy Blood and Tissue Kit)
- Specific region of salamander DNA (mitochondrial locus 12S) isolated with primers (iTru fusion)
- Isolated DNA sequence amplified with Polymerase Chain Reaction
- Salamander species identified from sequences (QIIME program, GenBank reference library supplemented with locally-collected tissue)
With training, volunteers can collect eDNA samples with relative ease.

Researchers working with citizen scientists could survey wide areas, or over long periods of time.
Comparison of Methods

• Monthly survey: June 2015 – April 2016
 – Direct monitoring: Leaf litter bags
 – Indirect monitoring: eDNA sampling
 – Purpose: Compare species identification and relative abundance as determined by both methods

• Pigpen Branch:
 – First order, low elevation (1,640 ft) stream
 – Site of established long-term monitoring project (since 2000) by Tremont citizen scientists
Both surveys identified the same five species of salamanders:

- Blue-ridge Two Line
 \[\textit{Eurycea wilderae}\]

- Black-bellied
 \[\textit{Desmognathus quadramaculatus}\]

- Seal
 \[\textit{Desmognathus monticola}\]

- Black-chinned Red
 \[\textit{Pseudotriton ruber}\]

- Spring
 \[\textit{Gyrinophilus porphyriticus}\]
Blue-ridge Two Line Salamander
(*Eurycea wilderae*)

![Graph showing relative abundance of Blue-ridge Two Line Salamander over time, with data points for eDNA and Leaf Bags.](image)
Black-bellied Salamander
(Desmognathus quadramaculatus)
Seal Salamander
(*Desmognathus monticola*)

![Graph showing relative abundance of Seal Salamander from May 2015 to May 2016. The graph compares eDNA and Leaf Bags.](image)
Black-chinned Red Salamander
Pseudotriton ruber

![Graph showing relative abundance of Black-chinned Red Salamander from May 2015 to May 2016. The graph plots relative abundance on the y-axis and months from May 2015 to May 2016 on the x-axis. Two lines are shown: one for eDNA and one for Leaf Bags. Peaks are observed in September 2015, December 2015, and January 2016 for eDNA, with no significant peaks for Leaf Bags.](image)
Spring Salamander
(*Gyrinophilus porphyriticus*)

![Graph showing relative abundance of Spring Salamander from May 2015 to May 2016. The graph includes two lines: one for eDNA and one for Leaf Bags. The eDNA line shows peaks in December 2015 and March 2016, while the Leaf Bags line shows a peak in March 2016.]
Conclusion

- eDNA sampling identified the same species confirmed through direct surveys
- Measuring relative abundance:
 - Some limitations
 - Evidence of seasonal trends observed
 - May be valuable for monitoring with baseline data
Acknowledgements

- Campbell Fellowship, Great Smoky Mountains Conservation Association
- Field sampling: Richard Secrist, Keane Secrist, Taylor Rinehart, Jama Rinehart
- Salamander ID consulting: John Maerz
- Leaf bag survey: Paul Super, Michelle Prysby, Jason Love, Josh Davis
- Additional field and lab work: Natalia Bayona Vásquez, Alexander Miele, Gabrielle McAllister, Michael Ellison, Tremont citizen scientists